Journal of Organometallic Chemistry. 113 (1976) 57-65
(C) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

# PHOTOCHEMICAL SUBSTITUTION REACTIONS OF SOME ALKYLCOBALOXIMES BY HYDROPEROXIDES AND THE CRYSTAL STRUCTURE OF CUMYL PEROXIDE(PYRIDINE) COBALOXIME 

C. GIANNOTTI *, C. FONTAINE *, A. CHIARONI and C. RICHE<br>Institut de Chimie des Suhstances Naturelles, Gif-sur-Yuette 91190 (France)

(Received November 3rd, 1975 : in revised form January 12th, 1976)

## Summary

Alkyl(pyridine) cobaloximes irradiated with visible light in the presence of tert-butyl or cumyl hydroperoxide give rise to tert-butyl or cumyl peroxide(pyridine) cobaloxime by photochemical substitution reaction. We report the structure of the cumyl peroxide(pyridine)cobaloxime determined by X-ray diffraction.

## Introduction

The reactivity of the $\mathrm{Co}-\mathrm{C}$ bond is of general interest [1] and in previous publications we reported studies of the anaerobic photolysis of some alkylcobaloximes [2]. In the present paper we report the photo-induced reactivity of some alkyl(pyridine) cobaloximes (Ia-Ie) with the tert-butyl (III1) and cumyl hydroperoxide (III2) and we describe the possible synthesis of the tert-butyl and cumyl peroxide(pyridine)cobaloximes (II1, II2) by a photo-induced substitution reaction.

## Results and discussion

The irradiation with visible light of a benzene solution of alkyl(pyridine)cobaloxime (Ia-Ie) and tert-butyl (III1) or cumyl hydroperoxide (III2) gives a green organometallic compound (respectively II1 and II2) and several organic products (Scheme 1). This reaction does not occur in the dark, even under reflux. The reduction of II1 or II2 by excess $\mathrm{NaBH}_{4}$ gives of tert-butanol or 2-phenyl-2-propanol, respectively. Analysis of the organic compounds occurring in the reaction has been performed after reaction of benzyl(pyridine)cobaloxime

[^0]
## SCHEME 1


(I)

a, $\mathrm{F}=-\mathrm{CH}_{3}$
$D, R=-C_{H}^{C C_{3}}$
$c \cdot R=-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}$
d. $0=\square$
$e, \mathrm{R}=-\mathrm{CH}_{2}(\square)$
$1 R=-\underbrace{\mathrm{CH}_{3}}_{\mathrm{CH}_{3}} \mathrm{CH}_{3}$



5. $R^{\prime}=\square$

$$
6, R^{\prime}=-C H_{2}-\square
$$

TABLE 1
${ }^{1}$ H NMR CHEMICAL SHIFT OF SOME ALKYL PERCXIDE COBALOXIMES ( $\delta$. PPM) IN CDCl 3

| Compounds | $\mathrm{CH}_{3}$ <br> (DMG) | CH; | Pridine |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{H}_{\boldsymbol{\alpha}}$ | $\mathrm{H}_{\beta}$ | $\mathbf{H}_{\boldsymbol{\gamma}}$ |
| II | 2.32(s) | 0.95(s) | 8.40(m) | 7.30(m) | 7.70(m) |
| ilb | 2.30(s) | 0.86(d) | 8.41 (m) | 7.30 (m) | 7.70(m) |
| 112 | 2.28(s) | 1.25(s) | 8.40(m) | 7.25 (m) | 7.70(m) |
| If | 2.14(s) | 1.25(s) | 8.40 (m) | 7.20(m) | 7.68(r) |
|  | 2.23(s) |  |  |  |  |

(Ie) into tert-butyl or cumyl hydroperoxide (III1, III2): we obtained compounds (IVe1) and (IVe2), respectively.

The ${ }^{2} \mathrm{H}$ NMR spectra of the organometallic complexes II1, II2 in comparison with those of ethylphenyl (II3) and isopropyl (IIb, $R=R^{\prime}$ ) peroxide(pyridine)cobaloxime suggest that two oxygen atoms are attached to the cobalt atom (Table 1) this conclusion is in agreement with the elementary analysis of II1 and II2 (Table 2). The X-ray structure of a crystal of cumyl peroxide(pyridine)cobaloxime (II2) confirming this hypothesis. The atom labelling scheme is shown in Fig. 1 and Fig. 2 gives a view along the $O(5)-C o-N(5)$ axes. The atomic parameters of the molecule are listed in Tables $3 a$ and $3 b$; the various lengths and bond angles are reported in Tables 4 and 5.

The four equatorial $\mathrm{Co}-\mathrm{N}$ bond lengths range from 1.887 to 1.892 A (average value 1.889 (2) A); the $\mathrm{Co}-\mathrm{N}$ (pyridine) bond length is $1.994(3) \mathrm{A}$ and that of $\mathrm{O}^{-\mathrm{O}} 1.454(3) \mathrm{A}$, distances which are in agreement with the values found in the crystal structure of 1-methyl-4-ethylphenylperoxidecobaloxime (II4) [3]. The increase of the torsional angle $\mathrm{Co}-\mathrm{O}-\mathrm{O}-\mathrm{C}$ to $132^{\circ}$ (114 ${ }^{\circ}$ in the previouslyquoted structure) is a necessary consequence of steric interactions between the methyl moieties of the cumyl and dimethylglyoxime groupings. The Newman projections along the $O(6)-C(9)$ and $C(9)-C(12)$ bonds are given in Fig. 3.

This photochemical substitution can be explained by the following mechanism: in the presence of hydroperoxide the alkyl(pyridine) cobaloxime gives rise to a cobalt(II) complex which reacts immediately with the tert-butyl or cumyl peroxide(pyridine)cobaloxime (II1, II2). To confirm this point we have synthetised a cobalt(II) complex $\mathrm{Py}-\left(\mathrm{Co}^{\text {II }}\right)-\mathrm{Py}$ (V) [4] and shown that the dark reaction of
(continued on p. 62;

TABLE 2
ELEMENTARY ANALYSIS OF III AND 112

| Compound | Formula | Analysis found (calcd.) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C | H | N | Co |
| 111 | $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Co}$ | $\begin{gathered} 44.26 \\ (44.64) \end{gathered}$ | $\begin{gathered} 6.14 \\ (6.12) \end{gathered}$ | $\begin{gathered} 15.35 \\ (15.33) \end{gathered}$ | $\begin{gathered} 12.33 \\ (12.69) \end{gathered}$ |
| 112 | $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Co}$ | $\begin{gathered} 50.49 \\ (50.85) \end{gathered}$ | $\begin{gathered} 5.92 \\ (5.78) \end{gathered}$ | $\begin{gathered} 13.54 \\ (13.48) \end{gathered}$ | $\begin{gathered} 11.02 \\ (11.36) \end{gathered}$ |

TABIAE 3
FHACTIONAL ATOMIC COOHDINATES WITI THEIR STANDALD DEVIATIONS (in parembexes) AND TBIERMA!, PARAMETERS

| Atom | X | $Y$ | $\%$ | $\beta_{1}$ | 132 | 13.3 | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | $63335(6)$ | $4721(4)$ | 3230(3) | 99 | 66 | 69 | 30 | 27 | 19 | 3.1 |
| C(2) | 620.8(1) | $5095(4)$ | $3158(4)$ | 223 | 61 | 108 | 45 | 36 | 12 | 5.2 |
| C(3) | 6357(b) | 4328(4) | 4061 (3) | 106 | 64 | 61 | 10 | 33 | 4 | 3.1 |
| C(1) | $7514(6)$ | $6157(4)$ | $4017(4)$ | 187 | 89 | 92 | 10 | --2 | $-7$ | 6.4 |
| C(b) | 4640(5) | $-107(4)$ | 2050(4) | 1.45 | 67 | 87 | 33 | 42 | 14 | 3.9 |
| C(6) | $4895(7)$ | $-1367(4)$ | $2054(4)$ | 311 | 71 | 131 |  | 65 | 33 | 6, H |
| C(7) | $36681(1)$ | 298(4) | 1200(3) | 1615 | 69 | 63 | 28 | 30 | 4 | 3.8 |
| C(8) | $2717(7)$ | -484(4) | 248(4) | 350 | 00 | 82 | 23 | 8 | -31 | 6,8 |
| C(9) | $8160(1)$ | $4330(3)$ | 1320(3) | 110 | 78 | 16 | 23 | 20 | 28 | 3.1 |
| C(10) | 9415 (6) | $3725(4)$ | 064 (3) | 167 | 015 | 7.4 | 41 | 51 | 20 | 4.4 |
| C(11) | 667116) | $4098(3)$ | $462(3)$ | 164 | 82 | 62 | 21 | 5 | 18 | 4.0 |
| C(12) | $8884(4)$ | $5678(3)$ | 1727(3) | 103 | 76 | 4.4 | 23 | 22 | 24 | 3.0 |
| C(13) | 10138(6) | 6003(4) | 2679(4) | 166 | 99 | 62 | 22 | $\ldots 9$ | 21 | 4.6 |
| C(14) | 10826(6) | 7218 (6) | 2980)(4) | 212 | 133 | 6.5 | $-3$ | $-18$ | 5 | 5.7 |
| C(16) | 10285(6) | $8124(4)$ | 2610(4) | 273 | 74 | 169 | 12 | 23 | $\cdots 2$ | 6.3] |
| C(16) | 9046(6) | $7811(4)$ | 1669 (4) | 218 | 83 | 81 |  | 22 | 24 | 5.0 |
| C(17) | 8352(6) | 6600(4) | $1285(3)$ | 141 | 8.4 | 56 | 32 | 13 | 22 | 3.8 |
| C(18) | 1530(4) | $2048(3)$ | $29.48(3)$ | 96 | 88 | 52 | 34 | 7 | 26 | 3.2 |
| C(10) | 22.1(6) | 1874(3) | $3450(4)$ | 92 | 90 | 78 | 28 | 21 | 26 | 3.9 |
| $C(20)$ | 365 (b) | 1485(1) | 4427 (4) | 113 | 95 | 73 | 24 | 43 | 28 | 4.0 |
| C(21) | $1807(6)$ | 1275(3) | 1862 (3) | 118 | 90 | 51 | 18 | 29 | 29 | 3.5 |
| C(22) | $3070(1)$ | 1471 (3) | 4322 (3) | 100 | 65 | 61 | 26 | 6 | 18 | 3.0 |
| N(1) | 4540(1) | $3834(3)$ | 2506(3) | 89 | fi5 | 46 | 31 | 16 | 23 | 2.7 |
| $N(2)$ | 6210(1) | 3162 (3) | 3945 (2) | 73 | 76 | 4 | 26 | 10 | 18 | 2.8 |
| $\mathrm{N}(3)$ | $5296(4)$ | 740(3) | 2837(3) | 102 | 65 | 6.4 | 36 | 25 | 28 | 3.1 |
| N(4) | $369014)$ | 14:773) | 1387(3) | 116 | 7.1 | 50 | 28 | 14 | 13 | 3.3 |
| $N(5)$ | 2968 (3) | 1870(2) | 3376 (2) | 9.4 | 52 | 47 | 22 | 13 | 14 | 2.6 |
| O(1) | 35:13(3) | 4026 (2) | 1687 (2) | 121 | 90 | 6.4 | 51 | 3 | 36 | 3.7 |
| 0 (2) | 7091 (3) | 2642(2) | 4123(2) | 130) | 107 | 67 | 49 | -..6 | 27 | 4.0 |
| O(3) | $6247(3)$ | 6.31 (2) | $36882(2)$ | 130 | H | 80 | 513 | 12 | 36 | 4.1 |
| O(4) | 2862(3) | 1961 (2) | (683) (2) | 175 | 95 | 5.3 | 4.4 | --12 | 16 | 4.3 |
| O(6) | 6806(3) | $2585(2)$ | 2046(2) | 177 | 58 | 72 | 23 | 40 | 20 | 3.4 |
| O(6) | 7733 (3) | $3864(2)$ | 2278(2) | 111 | 79 | 54 | 11 | 21 | 25 | 3.4 |
| Co | 4910(1) | 2288(0) | 2680(0) | 89 | 85 | 48 | 2 H | 14 | 18 | 2.6 |

TABLE 3
(b) ATOMIC COORDINATES ( $\times 10^{3}$ ) OF THE HYDROGEN ATOMS

| Atom | $x$ | $Y$ | 7 | B |
| :---: | :---: | :---: | :---: | :---: |
| H(2A) | 624 | 664 | 332 | 5.1 |
| H(2B) | 446 | 615 | 265 | 5.1 |
| H(2C) | 500 | 319 | 372 | 5.1 |
| H(4A) | 815 | 582 | 470 | 5.0 |
| H(4B) | 720 | 583 | 524 | 5.0 |
| H(4C) | 826 | 484 | 533 | 5.0 |
| H(GA) | 392 | --199 | 191 | 6.4 |
| H(6B) | 521 | -161 | 281 | 6.4 |
| H(6C) | 515 | $-143$ | 149 | 6.4 |
| H(8A) | 314 | -103 | -18 | 5.9 |
| H(8B) | 222 | $-118$ | 25 | 5.9 |
| H(8C) | 245 | -4 | -32 | 5.9 |
| H(10A) | 881 | 268 | 89 | 4.5 |
| H(108) | 971 | 393 | 26 | 4.5 |
| H(10C) | 1051 | 411 | 153 | 4.5 |
| H(11A) | 707 | 443 | -25 | 4.1 |
| H(11B) | 612 | 318 | 28 | 4.1 |
| H(11C) | 54.4 | 465 | 66 | 4.1 |
| H(13) | 1055 | 532 | 293 | 4.4 |
| H1(14) | 1:72 | 747 | 360 | 5.2 |
| H(15) | 1082 | 901 | 285 | 4.7 |
| H(16) | 871 | 851 | 133 | 4.9 |
| H(17) | 743 | 636 | 66 | 3.5 |
| H(18) | 14.4 | 232 | 221 | 2.8 |
| H(19) | -85 | 204 | 308 | 3.6 |
| H(20) | -60 | 139 | 484 | 3.5 |
| H(21) | 190 | 98 | 559 | 3.3 |
| H(22) | 41.4 | 131 | 460 | 2.8 |
| H(02) | 688 | 160 | 427 | 4.1 |
| H(04) | 303 | 286 | 103 | 4.3 |

TABLE 4
BOND LENGTHS (A)

| C(1)-C(2) | 1.475(6) | C(16)-C(17) | $1.379(6)$ |
| :---: | :---: | :---: | :---: |
| C(1)-C(3) | 1.458 (6) | C(18)-C(19) | $1.364(6)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)$ | $1.297(5)$ | $\mathrm{C}(18)-\mathrm{N}(5)$ | $1.347(5)$ |
| C(3)-C(4) | 1.468 (6) | C(19)-C(20) | 1.378(6) |
| C(3)-N(2) | 1.296(5) | C(20)-C(21) | $1.367(6)$ |
| C(5)-C(6) | $1.502(6)$ | $\mathrm{C}(21)-\mathrm{C}(22)$ | 1.363 (6) |
| C(5)-C(3) | 1.459(6) | $\mathrm{C}(22)-\mathrm{N}(5)$ | 1.345(5) |
| C(5)-N(3) | 1.299 (6) | N(1)-O(1) | $1.336(4)$ |
| C(7)-C(8) | $1.465(6)$ | N(1)-Co | $1.887(3)$ |
| C(7)-N(1) | $1.293(5)$ | N(2)-O(2) | 1.344 (4) |
| $C(9)-C(10)$ | $1.516(6)$ | N(2)-Co | $1.890(3)$ |
| C(9)-C(11) | 1.520 (6) | N(3)-O(3) | 1.342(5) |
| C(9)-C(12) | 1.525(5) | N(3)-Co | $1.892(3)$ |
| C(9)-O(6) | 1.462(5) | $N(4)-O(4)$ | 1.343(4) |
| C(12)-C(13) | $1.380(6)$ | N(4)-Co | 1.887 (3) |
| C(12)-C(17) | $1.378(6)$ | N(5)-Co | $1.994(3)$ |
| C(13)-C(14) | $1.388(7)$ | O(5)-O(6) | 1.455(3) |
| $C(14)-C(15)$ | $1.377(7)$ | O(5)-Co | 1.909(3) |
| C(15)-C(16) | $1.368(7)$ |  |  |



Fir. 1. A wiew of the molecule showing the numbering of the atoms. The hydrogen atoms are omitted.
this complex with tert-butyl or cumyl hydroperoxide rapidly gives the corresponding peroxides (II1) and (II2).

To attempt to extend this reaction to other organic hydroperoxides we synthesized the cyclohexyl and benzyl hydroperoxides [5] (III5, III6) but the photolysis of alkyl(pyridine) cobaloximes (la-Ie) with (III5) or (III6) gives no corresponding peroxide (pyridine)cobaloximes (II5) and (II6). The photosubstitution reaction only occurs with very stable hydroperoxides which give rise during the photolysis to long-living free radicals which can react with other free radicals arising from the photolysis of alkyl(pyridine)cobalcximes. In confirmation of this point, the photolysis of alkyl(pyridine)cobaloximes with the di-tert-butyl peroxide gives no photoproducts.


Fig. 2. Arrangement of the atoms viewed down the $\mathrm{O}(5)-\mathrm{Co}-\mathrm{N}(5)$ ares (angles in degrees).

TABLE 5
VALENCY ANGLES (degrees)



O6-C9

$\mathrm{Co}_{-1} \mathrm{Cl}_{12}$

Fig. 3. Newman projections along the $O(6)-C(9)$ and $C(8)-C(12)$ bor.ds: torsional angles are in degrees.

## Experimental methods

The ${ }^{1} \mathrm{H}$ NMR spectra were taken in $\mathrm{CDCl}_{3}$ solution on a Varian T 60 model instrument with tetramethylsilane as internal reference, $s$, singlet; $d$, doublet; m , multiplet.

We used the silicagel GF 254 (Merck) for the thin layer chromatographic
separation, and a $2: 2: 1$ mixture sf chloroform, ethyl acetate and methanol for elution.

## General photolysis

Alkyl(pyridine) cobaloximes (Ia-ie) were synthesized according to Schrauzer et al. methods [6]. A well deoxygenated yellow benzene solution of alkyl(pyridine)cobaloximes ( $2 \times 10^{-3} \mathrm{M}$ ) and commercial tert-butyl or cumyl hydroperoxide ( $1 \times 10^{-2} \mathrm{M}$ ) was irradiated with visible light produced by an OSRAM model XBF-Xe 2.5 kW arc lamp. A copper sulfate solution was used as a filter [7]. After the irradiation the solution became deep green. The solvent was removed under vacuum. The green mixture was chromatographed on thin layer apparatus (a) giving a large green band ( $R_{1} 0.6$ ) from which we obtained a $75 \%$ yield of green needles. Compounds (II1) and (II2) were caracterised by their ${ }^{1}$ H NMR spectra (Table 1) and their elementary analysis (Table 2). Crystals of cumyl peroxide(pyridine)cobaloxime (II2) suitable for X-ray study were grown by slow evaporation of ether/methanol solution.

The organic products are described in the case of the photolysis of the benzyl(pyridine)cobaloxime (le).

## X-ray methods

For the crystal structure determination, the intensities of 2084 independant reflexions ( $I>3 \sigma(I)$ have been collected by the $\theta-20$ technique out off $\theta=$ $24^{\circ}$ on a Philips PW 1100 diffractometer. Crystallographic data for 112 are: mol. wt. 519.4 ; triclinic space group $P \overline{\underline{I}}$, cell dimensions: $a=8.596(3), b=11.382(5)$, $c=12.987(7) \mathrm{A}, \alpha=95.04(3), \beta=98.56(3), \gamma=103.78(3)^{\circ}$, two molecules in the unit cell $(Z=2), D_{c} 1.42$, (Mo- $\left.K_{\alpha}\right) 0.7107 \AA$.

The crystal structure was soived by the direct method [8] and refined by full-matrix least-squares procedure [9]. The minimized function was $\Sigma w$ -$\left(F_{o}-F_{c}\right)^{2}$, where $w=1 / \sigma^{2}(F)$ and derived from $\sigma(I)$. All the hydrogen atoms were located on a difference map and included in the refinement of experimental positions. They were assigned the equivalent isotropic thermal factor of the bonded carbon atoms. Scattering factors were taken from Doyle and Turner [10] for the $\mathrm{Co}, \mathrm{C}, \mathrm{N}$ and O atoms and from Stewart, Davidson and Simpson [11] for the $H$ atoms. The applied corrections for the anomalous scattering of $C o$ were $\Delta f^{\prime}=0.4$ and $\Delta f^{\prime \prime}=1.0$. No correction for absorption was made. The finai $R$ factor was 0.033 .

A table of structure factors can be obtained from the author:s.

## Photolysis of benzyl(pyridine)cobaloxime

(a) With tert-butyl hydroperoxide. When the photolysis is carried out with the benzyl(pyridine)cobaloxime (Ie) in presence of tert-butyl hydroperoxide (IV1), we obtained the corresponding tert-butyl peroxide(pyridine)cobaloxime(II1) and tert-butyl benzyl peroxide(IVe1) ${ }^{1} \mathrm{H}$ NMF $\delta$ (ppm): t-butyl 1.30 ( $\mathrm{s}, \mathbf{9 H}$ ); $-\mathrm{CH}_{2}-$ $5.0(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{C}_{6} \mathrm{H}_{5}-7.50(\mathrm{~s}, 5 \mathrm{H})$; elementary analysis Found: $\mathrm{C}, 73.47 ; \mathrm{H}, 8.36$. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ calcd.: $\mathrm{C}, 73.33 ; \mathrm{H}, 8.88 \%$. We also isolated the dibenzyl $\mathrm{C}_{12} \mathrm{H}_{14} .{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}):-\mathrm{CH}_{2} \mathrm{CH}_{2}-2.95(\mathrm{~s}, 4 \mathrm{H}) ; \mathrm{C}_{0} \mathrm{H}_{5}-7.75(\mathrm{~s}, 10 \mathrm{H}) ;$ m.p. $51-52^{\circ} \mathrm{C}$.
(b) With cumyl hydroperoxide. The photolysis of benzyl(pyridine)cobaloxime (Ie) with cumyl hydroperoxide (IVe) gave the corresponding cumyl peroxide-
(pyridine)cobaloxime (II2) and cumyl benzyl peroxide (IVe). ${ }^{1} \mathrm{H}$ NMR $\delta$ ( ppm ): $2 \mathrm{CH}_{3}-1.30(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{CH}_{2}-4.95(\mathrm{~s}, 2 \mathrm{H}) ; 2 \mathrm{C}_{6} \mathrm{H}_{5}-7.20(\mathrm{~m}, 10 \mathrm{H})$; elemontary analysis: found: $\mathrm{C}, 79.15 ; \mathrm{H}, 7.31 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ calcd.: $\mathrm{C}, 79.33 ; \mathrm{H}, 7.43 \%$. Also was found acetophenone: ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}):-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3} 2.5(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{C}_{6} \mathrm{H}_{5}$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~m}, 2 \mathrm{H})$; carbonyl band in IR at $1700 \mathrm{~cm}^{-1}$.

Reduction of II. Tert-butyl peroxide (pyridine)cobaloxime (II1) 0.5 mmol was dissolved in 50 ml of methanol at $-10^{\circ} \mathrm{C}$, with nitrogen bubbled through the solution. Solid sodium borohydride was added in two 5 mmol portions.

The solution turned dark green. We allowed the temperature to rise to room temperature, added 10 ml of distilled water and extracted with ether. The ether layer was dried over sodium sulfate and yielded 0.4 mmol of tert-butanol icientified by ${ }^{1} H$ NMR and IR. In the case of the reduction of cumyl peroxide(pyridine)cobaloxime (II2) we obtained 2-phenyl-2-propanol.

The synthesis of 1115,1116 and $V$ were carried out according to the literature [4,5].

Reactions with cyclohexyl and benzyl hydroperoxide (III5, III6). A welldeoxygenated benzene solution of alkyl(pyridine) cobaloximes ( $2 \times 10^{-3} \mathrm{M}$ ) and hydroperoxide (II5 or III6) ( $1 \times 10^{-2} \mathrm{M}$ ) was irradiated following the above procedure. We observed only decomposition of the alkylcobaloximes (Ia-Ie).

## References

[^1]
[^0]:    * This work is a part of the thesis of C. Fontaine.

[^1]:    1 D. Dodd and M.D. Johnson. J. Organometal. Chem.. 52 (1973) 1. and references cited therein.
    2 C. Giannoti. G. Merle and J.R. Bolton. J. Organometal. Chem. 99 (1375) 145. and references cited therein.
    3 A. Chiaroni and C. Pascard-Billy, Bull. Soc. Chim. Fr. (19;3) 781 .
    4 G.N. Schraurer and L.P. Lee. J. Amer. Chem. Soc. 92 (1970) 1551.
    5 C. Walling and S.A. Buchler. J. Amer. Chem. Soc.. 7 (1955) 6032.
    6 G.S. Schrauzer and R.J. Windgassen. J. Amer. Chem. Soe.. 88 (1966) 3738.
    7 M. Kaqha. J. Opi. Soc. Amer., 38 (1949) 949.
    8 C. Riche. Acta Cryshllogr.. A. 29 (1973) 133.
    9 W.R. Busing. K.O. Martin and MA. L. Levy, ORFLS Oak Ridge National Laboratory Report ORNL-TM305 (1962).
    10 P.A. Doyle and P.S. Turner, Acta Crystallogr, A. 24 (1968) 390.
    11 R.F. Steuart, E.f. Davidson and W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.

